USN

Third Semester B.E. Degree Examination, June/July 2014

Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. For any three sets A, B, C, prove: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. (06 Marks)
 - b. Among the integers from 1 to 200, find the number of integers that are:
 - i) not divisible by 5
 - ii) divisible by 2 or 5 or 9
 - iii) not divisible by 2 or 5 or 9.

(07 Marks)

- c. A problem is given to four students A, B, C, D whose chances of solving it are 1/2, 1/3, 1/4, 1/5 respectively. Find the probability that the problem is solved. (07 Marks)
- 2 a. Define a tautology and contradiction. Prove that, for any propositions p, q, r, the compound proposition $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology. (06 Marks)
 - b. Define the dual of logical statement. Verify the principle of duality for the following logical equivalence: $[\neg(p \land q) \rightarrow \neg p \lor (\neg p \lor q)] \Leftrightarrow (\neg p \lor q)$. (07 Marks)
 - C. Define converse, inverse and contra-positive of a conditional with truth table. Write down the contra-positive of $[p \rightarrow (q \rightarrow r)]$ with:
 - i) only one occurrence of the connective \rightarrow
 - ii) no occurrence of the connective \rightarrow .

(07 Marks)

- 3 a. Negate and simplify each of the following:
 - i) $\exists x, [p(x) \lor q(x)]$
 - ii) $\forall x, [p(x) \land \neg q(x)]$
 - iii) $\forall x, [p(x) \rightarrow q(x)]$

(06 Marks)

b. Establish the validity of the following argument:

(07 Marks)

- c. Prove that every even integer n with $2 \le n \le 26$ can be written as a sum of atmost three perfect squares. (07 Marks)
- 4 a. Let $a_0 = 1$, $a_1 = 2$, $a_2 = 3$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for $n \ge 3$. Prove that $a_n \le 3^n$ for all positive integers n. (06 Marks)
 - b. Find an explicit definition of the sequence defined recursively by $a_1 = 7$, $a_n = 2a_{n-1} + 1$ for $n \ge 2$. (07 Marks)
 - c. The Lucas numbers are defined recursively by $L_0=2$, $L_1=1$ and $L_n=L_{n-1}+L_{n-2}$ for $n\geq 2$. Evaluate L_2 to L_{10} . (07 Marks)

- a. Suppose A, B, C \subseteq Z X Z with A = $\{(x, y)|y = 5x 1\}$; B = $\{(x, y)|y = 6x\}$; $C = \{(x, y) | 3x - y = -7\}$. Find: (i) $A \cap B$, (ii) $B \cap C$, (iii) $\overline{A} \cup \overline{C}$, (iv) $\overline{B} \cup \overline{C}$. (06 Marks)
 - b. Define stirling number of second kind. Find the number of ways of distributing four distinct objects among three identical containers with some containers possibly empty. (07 Marks)
 - c. If $f: A \rightarrow B$, $g: B \rightarrow C$, and $h: C \rightarrow D$ are three functions then prove that $(h \circ g) \circ f = h \circ (g \circ f)$. (07 Marks)
- a. Let $A = \{1, 2, 3, 4\}$, $B = \{w. x. y. z\}$ and $C = \{5, 6, 7\}$. Also, let R_1 be a relation from A to B, defined by $R_1 = \{(1, x), (2, x), (3, y), (3, z)\}$ and R_2 and R_3 be relations from B to C, defined by $R_2 = \{(w, 5), (x, 6)\}, R_3 = \{(w, 5), (w, 6)\}.$ Find $R_1 \circ R_3$. (06 Marks)
 - b. Find the number of equivalence relations that can be defined on a finite set A with |A| = 6. (07 Marks)
 - c. For $A = \{a, b, c, d, e\}$, the Hasse diagram for the poset (A, R) is as shown below:

Fig.Q6(c)

- i) Determine the relation matrix for R.
- ii) Construct the diagraph for R.

(07 Marks)

- a. Define subgroup of a group. Let G be a group and let $J = \{ x \in G \mid xy = yx \text{ for all } y \in G \}$. Prove that J is a subgroup of G.
 - b. State and prove Lagrange's theorem.

(07 Marks)

- c. The word c = 1010110 is sent through a binary symmetric channel. If p = 0.02 is the probability of incorrect receipt of a signal, find the probability that c is received as r = 1011111. Determine the error pattern.
- a. The parity-check matrix for an encoding function $E: z_2^3 \to z_2^6$ is given by

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- i) Determine the associated generator matrix.
- ii) Does this code correct all single errors in transmission?

(06 Marks)

- b. Prove that the set z with binary operations \oplus and \odot defined by $x \oplus y = x + y 1$; $x \odot y = x + y - xy$ is a cumulative ring. (07 Marks)
- c. Show that z_6 is not an integral domain.

(07 Marks)